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Abstract. This paper extends the calculations for the 2S-+2 P band shape with degenerate 
and equally coupled t2 and E vibrations to be usable for any spin as long as the spin-orbit 
coupling is sufficiently small compared with the Jahn-Teller coupling. It turns out that the 
similarity between the calculations for states of different spins is such that the only numerical 
calculations that need to be made are those for the doublet states, for which the matrices are 
already set up and the techniques established. 

1. Introduction 

Measurements of absorption and magnetic circular dichroism (MCD) spectra of the 
’S --$* P transitions for a variety of impurity atoms in noble-gas matrices over the years 
have provided a rich source of Jahn-Teller-dominated profiles (Zeringue et a1 1983, 
Lund et a1 1984, Vala etal 1984, Rose etal 1986, Samet et a1 1989). These have been very 
well matched by theoretical profiles based on a model that assumes equal coupling to a 
set of five vibrational modes of t2g and cg symmetry, with these modes having the same 
frequency (O’Brien 1985, Rose et a1 1986, Samet et a1 1989). The fit is best when the 
vibrational frequency is taken to be as small as possible relative to the Jahn-Teller 
energy, and this condition together with the equal coupling can be taken to mean that 
the surroundings of the ion are behaving like a soft elastic continuum. The broadening 
resulting from coupling to symmetric modes of vibration is usually small compared with 
the Jahn-Teller band width, enabling the Jahn-Teller profile to be particularly well 
resolved. In this strong-coupling regime the cluster (single-frequency) approximation is 
particularly good, but the method of calculation by numerical diagonalisation of large 
matrices gets much more difficult as the coupling strength increases. 

All the calculations done so far are for singlet and doublet spin states and, if states 
of higher spin were to be tackled in the same way, the matrices to be diagonalised would 
be very much larger. For this reason a method of calculating band shapes is proposed 
here that can predict those of higher spin on the basis of calculations for S = 4 only. This 
works if the spin-orbit coupling is weak compared with the Jahn-Teller coupling and 
results in ‘universal’ band shapes that are independent of spin. These calculations were 
prompted by work by Rivoal and his collaborators (Rivoal and Vala 1987, Vala et a1 
1987, Rivoal 1988) on systems that satisfy these criteria, and for which the band shapes 
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can be very nicely fitted. For these higher spins it is also possible to get another band 
shape by measuring the magnetic linear dichroism (MLD), and that band shape is also 
calculated in what follows. 

2. Moments analysis of MCD and MLD 

The method of moments has been very widely used for 20 years or so for extracting 
information from band shapes, and the theory has been discussed elsewhere, but that is 
not what we need it for here. We shall use it only to show the equivalence of band shapes 
for different spins by showing that all the moments can be related by a constant factor 
and shall derive only as much of the theory as is needed for that purpose. 

The method uses the fact that, if a transition is allowed into an uncoupled state, IO), 
which is coupled to a set of states by a Hamiltonian X ,  then the nth moment of the band 
about the uncoupled energy of 10) is given by 

P" = ( 0 l ~ " l O ) .  (1) 
For an "S + "P transition the state 10) is whichever component of the P state is produced 
from the S state by the particular polarisation of light being used. An average has to be 
taken over the spin multiplicity of the ground state; so 

pn =AV(Sz)(07Szl(Xe,h+ X J T +  ~ l ' s ) ' l o , S z > .  (2) 
Now the MCD is zero if [ = 0; so, for the MCD band shape for small [, we must pick terms 
with a single power of I - S and, as this is the only part of the Hamiltonian that operates 
on the spin variable, we can replace I .  S by l,S, and get 

P n  = ( s z ) A v  [ ( O ) ~ [ ~ ~ ( ~ p h  + xJT)n-l]lO) (3) 
where the operator 9 permutes the factors. The importance of this result is not in a 
direct calculation of the moments, which is an intractable problem, but in showing that 
all these MCD moments are related to each other by the factor ~(S,),,, and so, to first 
order in c, the shape of all the MCD bands can be derived from the one most easily 
calculated, that for S = i. 

For the MLD we have to carry this process to second order in (, because the con- 
tribution to first order in [ is zero. To work this out we must be more specific about the 
state labelled 10, S,) in equation (2). For the MLD, two measurements are taken: one with 
polarisation such that the electric vector is along the magnetic field which provides the 
quantisation for S,, and the other with it perpendicular. Consequently we can write 

where Ix) and 12) are real P states. The terms linear in 5 can be seen to be zero because 
the P states are real and 1 is a purely imaginary operator. The non-zero c2 terms must 
come from operator products such as lsls that are diagonal in the real P states, and not 
from products such as lJ, that are not. This determines which parts of the ( l . S ) *  
operator must be used and means effectively that the average over spins must be a linear 
combination of and (St),,. These averages are related to each other, and 
the linear combination that goes to zero in zero applied field is (S(S + 1) - 3Sf)Av.  Once 
this part of p, has been extracted, what remains of the c2 part is independent of S;  so 
there is a universal band shape for the MLD just as there is for the MCD. This band has 
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no zeroth or first moment. We cannot find it as directly as we can the MCD because 
(S(S + 1) - St),, goes to zero in the S = 2 states. 

3. Band shapes for small 6 

Because the spin-orbit coupling is small, the appropriate coupling scheme to use is 
one in which the orbital P states are first coupled to the phonon states and suitably 
symmetrised to produce states which are classified by an angular momentum quantum 
number. These vibronic states are labelled D, in what follows, where n is the aforesaid 
angular momentum quantum number. This scheme wasused by O’Brien (1976, hereafter 
referred to as I) and it was shown there that all integral angular momentum quantum 
numbers appear except zero. It is the states with L = 1 that contain the uncoupled P 
state, and consequently contribute to the allowed S + P transition. We next couple in 
the spin to get states of total angular momentum 1, and find these occur as follows: 

S @ D , : J = S + l  S s-1 

S @ D 2  : J = S + 2  s+1 S 

S @ D ,  : J = S + 3  s+2 s+1 

. . . .  
(For the special case S = 4 the last column is missing.) The simplest set of states will be 
for J = S - 1, which contains only D1 vibronic states in its basis. Reference to I shows 
that these derive from vibrational states of two different angular momenta, 0 and 2. The 
matrix elements of f Z  + S occur only on the diagonal of the standard matrix in the basis 
of the uncoupled states, and the matrix elements are of the form 

where 

(1, S; JIIZ * Sill, s; J )  = + [ J ( J  + 1) - 2 - S(S + l)]. (6) 

Here L = 0 or 2, the first reduced matrix element in ( 5 )  allows for the coupling of the 
electronic angular momentum with the vibrational states, and the second reduced matrix 
element allows for variations in the choice of J and S. Thus we see that the matrix is 
independent of the choice of S except for a scaling of f by the factor (6). 

If the absorption band shape for this particular J-value of S - 1 were worked out and 
expanded in powers of f ,  then we should find that the absorption intensity as a function 
of energy x could be written 

P y x )  = ZO(X) + f’Z,(x) + (’2Z2(X) + . . 1 (7) 

for S > 2 where 

(8) f ’  = + f [ J ( J  + 1) - 2 - S(S + l)] = - f (S + 1) 

and the functions Io ,  ZI, Z2, . . . are independent of S. These functions will depend on the 
Jahn-Teller coupling strength, and they are defined by the above two equations. We 
omit a degeneracy factor, (U + l), from the transition probability as well as the numeri- 
cal value of any transition matrix elements. In the special case S = 2 the lowest value of 
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J is 3, so for 1(1/2)(x) we must take 

[' = g-[t(i + 1) - 2 - i(i + l)] = -[ 

z(1/2) ( x )  = Z0(x) - [Z, (x) + [2Z,(X) + * . . * 
giving 

The next set of states to consider is those with J = S. The matrix for these states falls 
into two blocks; one deriving from S C3 D,, to which transitions are allowed, and one 
from S C3 D2 to which transitions are forbidden if [ = 0. A consideration of the moments 
of the band derived from such a matrix shows that to order C2 there are two contributions: 
one in which both the [-factors are within the S C3 D, block, and one in which both the 
c-factors connect S C3 D, to S C3 D2, and this second contribution only comes in to order 
f 2 .  Consequently we can now write the absorption intensity as 

z'yx) = Z&) + tfZ,(x) + ['2Z2(x) + g112ZI2(X) + * . . 

5'' = i c [ J ( J  + 1) - 2 - S(S + l)] = -[ 

(11) 

(12) 

for S > 4, where lo, ZI and Z2 are the same as before, and 

for J = S .  

To get the correct reduced matrix element for ( 1 -  S between the blocks, we have to use 
the equation (Judd 1963, equation (3.36)) 

and, to avoid extra work, use the formula twice to give 

1 S J  

The formulae for these two 6j symbols are (Rotenberg et a1 1959) 

2[S(S + 1) + 2 - J ( J  + l)] 
[2S(2S + 1)(2S + 2) x 4 x 5 x 6]1/2 

2(J+  S + 3)(2 + S - J)(2 + J  - S ) ( J +  S - l)]'i2 
(16) [ 2S(2S + 1)(2S + 2) x 3 x 4 x 5 

so that 

r/,' = -[6(J + S + 3) (2 + S - J) (2 + J - S)  ( J  + S - 1)]'/2 

x [S(S + 1) + 2 - J ( J  + l)] (17) 

g11 -[6(2S - 1)(2S + 3)I1I2[. (18) 

and if J = S this gives 

when S = i the matrix with the double-block structure is that for J = 3; "0 we use the 
above equations with J = S + 1 to get 

Z(39x) = I&) + <'Z,(x) + G'2Z2(x) + g112Z12(x) + . . 9 (19) 

(20) 

with 
[ r  = ;[[$$ - 2 - "1 - I[ 

2 2  - 2 
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and 

5" = - 3 [ 2 ~ ( s  + 2)]1/2( = -[9-]1/*( (21) 

which is obtained by putting J = S + 1 in equation (17). Finally we can look at the 
J = S + 1 states. The matrix here has a three-block structure, but the S €3 D3 block 
connects only to the S €3 D2 block, and not directly to the S €3 D1 block. Consequently 
this third block can be ignored to second order in (, and the absorption intensity can be 
written immediately as 

Z(S'')(x) = I&) + ('Zl(X) + C'*Z*(x) + y2Z12(x) + . . . (22) 
with 

t' = + ( [ ( S  + 1)(S + 2) - 2 - S ( S  + l ) ]  = ( S  

and 

= -3[2S(S + 2)]"2C (24) 
as above. 

What this analysis shows is that we can find the band shapes up to second order in C 
just by using the method already set up to find the S = 1 band shapes for various small 
values of 5. 

4. The MCD band shape 

To find the MCD band shape we can work with the states for S = &. When a spin o f f  is 
coupled to a P state the states formed are J = 4 and J = P, and the MCD band is made up 
of an appropriate linear combination of fi1/2)(x) and 1(3/2)(x). The dipole transition 
operators from the ground 2S state produce the components of P without altering the 
spin components, and the probability of each operator producing each state can be 
calculated with the following results: 

spin component J = 4 J = & 

0, on 

a+ on 

0- on 

a- on 

I+> 1 0 

I - )  5 3 

I+ )  5 4 
I - )  1 0 

2 

For MCD the dipole operator is a+ - a-; so the MCD band shape should be 

f i M C D ) ( x )  = [ p ( + )  - p ( - ) ] [ p ) ( x )  - $Z('/2)(x)] (25) 

where p (  +) and p (  -) are the probabilities of the spin components in the initial states. 
These probabilities can be written as a thermal average over spin states to give 

I ( M C D ) ( x )  = 2(Sz),,[3Z(3'2)(x) - 4Z(1'2)(x)]. (26) 
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taken to first order in this gives, for the S = 1 states, 
flMCD)(X) = 2(sz)Avczl (x) 

and this is now a general expression for small t, and any spin. 

5.  The MLD band shape 

The smallest spin to give a non-zero MLD in an “S + “P transition is S = 1; so we start 
there. We couple the P states to a spin, S = 1, and get the explicit forms for the three 
different J-states. The possible values of J are 0, 1, 2; so the MLD band shape will be 
made up of a linear combination of fl’-’)(x), I ” ) (x)  and fiS+l)(x) with S = 1. The dipole 
transition operators from the ground 3S state produce the three components of the P 
state without altering the spin components; so the probability that each operator pro- 
duces each J-state can be calculated from the explicit forms of the coupled states, with 
the following results: 

spin component J = 2 J = 1 J = 0 

a+ on 1+1) 1 0 0 

a+ on lo> 2 1 0 

a+ on 1-1) F 2 3 

1 1 

1 - 1 1 

1 1 1 a- on I+l) F 1 B 

a- on 10) 1 1 0 

a- on 1-1) 1 0 0 

1 1 

1 1 a, on 1+1) 1 1 0 

0, on lo> 3 0 3 

a, on 1-1) 1 1 0 

2 1 

1 1 

For MLD the operator is U, - $(a+ + a-); so the probabilities are 

J = 2  J = l  J = O  

1 -- 1 from 1+1) -h 4 6 

from 10) Q -$ 3 
1 

1 -1 from 1-1) -A 4 6 .  

the MLD band shape should thus be 

P y x )  = [ (p(O)  - ip(+l) - i p ( - l ) ] [ p - l ) ( x )  - $Z(’)(x) + J P + 1 ) ( x ) ]  (28) 
wherep(O), p(+l)  andp(-1) are the probabilities of the spin components in the initial 
states. These probabilities can be written as a thermal average over spin states, so that 

flMLD)(x) = &(S(S + 1) - 3SZ)Av[2Z(’-’)(~) - ~Z(’)(X) + Z‘””(X)]. (29) 
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+ .. 
- 0.002 

Substituting S = 1 in the equations (7), (11) and (22) and putting them in equation (29) 
gives 

flMLD)(x) = t(S(S + 1) - 3S:),,[f2Z,(x) - 6f2Z,,(x)] (30) 

I 
i 

I 
- 1 

where I z ( x )  and I l 2 ( x )  are also defined in section 3. This calculation verifies that the MLD 
only appears to second order in f ,  and is a general form for small [ and any spin. 

0.001 ( c )  1 

, , , , , I  

-20 -10 0 10 20 30 
Energy(units of hwl 

t -0.004 

\ ,  -o‘m21 -0.004 v 
I 1  -x) -10 0 , 10 , 20 30 , 

Energy (unlts of h w )  

Figure 1. Band profiles calculated as described in the text. The same coupling strength, 
k = 14.49Ro, is used throughout, and 5 = 0.OSkho: (a )  absorption profiles Zo(x); (b)  MCD 
profiles -cIl(x); (c) 25’1,(x); (d )  6 c 2 1 , , ( x ) ;  ( e )  MLD profiles y , [C*~ , (X)  - 6<*Z&)]. The 
absorption profiles are normalised to unity, and the intensities of the other profiles are 
related to the absorption intensities as describedin the text. Two different widths of Gaussian 
smoothing are used and the convoluted function is (u/z)”’ exp(-ox’): -, U = 0.3; ---, 
0 = 0 . 1 .  
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6. Numerical methods, results and comparison with experiment 

In a previous paper (O’Brien 1985) we have used the method of diagonalising large 
matrices in the basis of the uncoupled states to calculate the quantities now called 
1(3/2)(x) and 1(1/2)(x) for various values of the coupling strength and 5. Now we want to 
use the same routines to find the various profiles Zl(x) ,  Z2(x), etc, which means running 
them for small values of 5 and taking linear combinations. For instance 

[Z“’*’(X)][ + [Z(1’2)(X)]-C - 2[Z“’*’(X)](J = 2i;2Z,(x) (31) 

and 

[Z(3’2)(~)]; + [Z(3’2)(~)]- i  - 2[Z(3’2’(~)]0 = 52[iZ2(~) + 451,2(~)]. (32) 

It was necessary to check the convergence of the 5-expansion by trying a range of small 
values of 5, and the checking was done by generating profiles and comparing them 
visually. It turned out that taking a very small but non-zero value of 5 introduced extra 
inaccuracies in the numerical process, and care had to be taken to allow for this. 

An assortment of band profiles are shown in figure 1. The coupling strength chosen 

0.14 - (,-,) 

0.12 1 & 

( b l  
0.014 L 

I 
0.012 1 
0.010 I -q 
0.006 

0.004 1 
0.002 L 

2.50 2.55 2.60 2.65 2.70 
Energy (lo-‘ cm-’l 

Figure 2. Fit to data on Mn in Kr (from Rivoal (1988)) for (a )  absorption and ( b )  MCD (the 
shift of zero on the MCD band is ignored as coming from coupling to a neighbouring level): 
__ , theoretical data; *-*, experimental data at (a) T = 5.84 K and ( b )  T = 5.96 K,  
B = 1.5 T. The experimental plots are on the same scale. The theoretical absorption is 
scaled from the MCD assuming [ = 7 cm-’ .  
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was as large as could conveniently be handled. As usual the band shapes were produced 
by smoothing a set of lines, using a Gaussian convolution, and the effect of using two 
different widths is shown. In an actual measured band this smoothing would correspond 
to coupling to the totally symmetric mode of vibration, and a variety of different amounts 
of smoothing are found experimentally. 

In figure 2 is shown the fit to the absorption and MCD measurements on Mn in Kr 
made by Rivoal (1988). The transition here is %--, 6P and c is very small; so the 
theoretical fit should be good. The fitting parameters were chosen to fit the two main 
peaks of the MCD band, and the vertical scale for the absorption was calculated using the 
measured c of 7 cm-'. Apart from baseline problems the agreement looks good. The 
MLD was looked for but did not appear above noise; this theory predicts a peak MLD 
smaller than the peak MCD by a factor of 0.16 at the temperature used. 

Other examples of these band shapes can be seen in the 'S + 2'P transition for Cr 
in Kr and Xe (Vala et a1 1987) and in the 'blue triplet' for K in Kr (Samet et all989). It 
is to be hoped that the success of these fits might lead to more examples being found. 
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